
 ELC 2017

War Story: Using Zephyr to Develop a Wearable Device
Neil Armstrong & Fabien Parent



● Based on a true story

● Many choices, why Zephyr?

● Zephyr in a nutshell

● Porting & upstreaming a new platform

● Community differences compared to Linux

● Conclusion

Agenda





Platform



OS requirements
Drivers
● UART
● I2C master driver
● SPI slave driver

Basic OS features
● Scheduler
● Timers
● Task/Threads
● Locks
● ...



Choosing the RTOS

List of candidates

● NuttX
○ 3-clause BSD license

● Zephyr
○ Apache License 2.0

● Bespoke OS

Our constraints:

● Permissive License
● Free (as in free beer)



Option 1: Bespoke OS
Pros

● Fun to implement
● Can be tailored to our needs
● Easy to understand the whole code base

Cons

● Takes time
● No community, fewer eyes on code
● Little time to mature and fix early bugs



Option 2: NuttX
Pros

● Familiar, used it on previous project (Google’s Project ARA)
● Already supports our SoC (STM32L4xx)

Cons

● Build system is completely unreliable
● Optional GPL components are scary
● No meaningful community
● BFDL contributions and maintenance are questionable



Option 2: NuttX

No peer review?



Option 3: Zephyr
Pros

● Similar in many ways to Linux (coding style, Kbuild, Kconfig, …)
● Strong community is a goal
● Embraces maintainers concept
● Great documentation

Cons

● No support for STM32L4xx
● Project still very young, unsure of its maturity
● Not aware of any real product using it



Verdict

Obvious winner:



Option X: Apache myNewt

Came to our attention after OS 
selection was completed



Zephyr in a nutshell



Zephyr Features
● Lib C (newlib)

● Designed for low memory usage (everything is statically allocated)

● Highly configurable and modular

● Cooperative and preemptive threading

● Pre-certification for security (someday)



Development Lifecycle

Zephyr 1.6
Release cycle: ~3/4 months
Merge Window: ~11 weeks
Stabilization: ~3 weeks

Linux 4.8
Release cycle: ~2/3 months
Merge Window: ~2 weeks
Stabilization: ~8 weeks



Leadership
● Linux Foundation Technical Steering Committee (TSC)

○ https://lists.zephyrproject.org/pipermail/zephyr-tsc

● Maintainers do not have to be Zephyr Project/TSC members

● Sub-maintainer concept same as Linux

● Planning and technical decisions spread across JIRA, Gerrit & mailing lists

● Blog posts controlled through separate committee

https://lists.zephyrproject.org/pipermail/zephyr-tsc
https://lists.zephyrproject.org/pipermail/zephyr-tsc


Top-down development
● Features planned in advance

○ Unified Kernel (ZEP-334)
○ New IP Stack (ZEP-322)
○ Thread Protocol (ZEP-337)

● Delayed features may delay closing the merge window
● Do planned features have priority vs community contributions?

Source: 
https://lists.zephyrproject.org/pipermail/zephyr-tsc/attachments/20160817/90b0
0994/attachment-0001.pdf 

https://jira.zephyrproject.org/browse/ZEP-334
https://jira.zephyrproject.org/browse/ZEP-322
https://jira.zephyrproject.org/browse/ZEP-337
https://lists.zephyrproject.org/pipermail/zephyr-tsc/attachments/20160817/90b00994/attachment-0001.pdf
https://lists.zephyrproject.org/pipermail/zephyr-tsc/attachments/20160817/90b00994/attachment-0001.pdf
https://lists.zephyrproject.org/pipermail/zephyr-tsc/attachments/20160817/90b00994/attachment-0001.pdf


Adding STM32L4xx support to Zephyr



s/STM32F1/STM32L4/g
Solution: copy/paste the closest SoC/board and use them as example.

cp -r arch/arm/soc/st_stm32/stm32{f1,l4}

cp drivers/clock_control/{stm32f107xx_clock.c,stm32l4xx_clock.c}

cp drivers/pinmux/stm32/pinmux_board_nucleo_{f103rb,l476rg}.c

cp drivers/serial/uart_{stm32,stm32lx}.c

cp -r boards/nucleo_{f103rb,l476rg}



Porting is fast & easy
● Tested platform support added in less than a week

○ STM32L4xx CPU
○ UART
○ I2C
○ SPI

● Most of that time was spent on I2C/SPI testing



1. RTFM

https://wiki.zephyrproject.org/view/Collaboration_Guidelines

2. Clean-up patches to follow coding standard and run “checkpatch”

3. Upload patches to gerrit

4. Wait for reviews

Upstreaming the STM32L4 port

https://wiki.zephyrproject.org/view/Collaboration_Guidelines
https://wiki.zephyrproject.org/view/Collaboration_Guidelines


1. RTFM

https://wiki.zephyrproject.org/view/Collaboration_Guidelines

2. Clean-up patches to follow coding standard and run “checkpatch”

3. Upload patches to gerrit

4. Wait for reviews

5. Ping maintainers on IRC

Upstreaming the STM32L4 port

https://wiki.zephyrproject.org/view/Collaboration_Guidelines
https://wiki.zephyrproject.org/view/Collaboration_Guidelines


Upstream ASAP!
● Zephyr is young and its APIs are changing fast

● Rebases are painful

● Power management implementation needed to be rewritten 3 times

● Conclusion: merge code quickly before the base shifts beneath you



Community differences compared to 
Linux



Zephyr and HALs

“
Our goal is [...] porting based on STM32 Cube SDK [...] 
Would it be ok for you to hold on your upstream, waiting 
for us to come up with our implementation proposal [...]

” - Gerrit review comment
Source:
https://gerrit.zephyrproject.org/r/#/c/5194/

https://gerrit.zephyrproject.org/r/#/c/5194/
https://gerrit.zephyrproject.org/r/#/c/5194/


Linux and HALs

“
No HALs. We don't do HALs in the kernel.

”
- Dave Airlie, Linux DRM Maintainer

Source: 
https://lists.freedesktop.org/archives/dri-devel/2016-December/126516.html

https://lists.freedesktop.org/archives/dri-devel/2016-December/126516.html
https://lists.freedesktop.org/archives/dri-devel/2016-December/126516.html


To HAL or not to HAL?
Input requested from maintainers

None is given

Result: vendor HALs are slowly replacing native drivers

Source:

https://lists.linuxfoundation.org/pipermail/zephyr-devel/2016-November/006633.html

https://lists.linuxfoundation.org/pipermail/zephyr-devel/2016-November/006633.html
https://lists.linuxfoundation.org/pipermail/zephyr-devel/2016-November/006633.html


Maintainers

“
The reason the toplevel maintainer (me) doesn't work for 
Intel or AMD or any vendors, is that I can say NO when 
your maintainers can't or won't say it.

”
- Dave Airlie, again.



Review tools
Gerrit

JIRA

Mailing list

Great talk from Greg K.H. about the tools used for Linux: https://youtu.be/L8OOzaqS37s

https://youtu.be/L8OOzaqS37s


JIRA
Pros

● Manager-friendly

Cons

● Developer-unfriendly
● Yet another communication medium in addition to mailing-lists and gerrit
● Do community contributors need to use it?



Gerrit
Pros

● Easy to not forget patches

Cons

● Slow
● Unnecessarily complicated
● Patch submitter selects reviewers; no broadcast
● No patch series
● Archive search is bad



Mailing lists
Pros

● They work

Cons

● None



Conclusion

Zephyr Pros

● Similar enough to Linux
● APIs are simple and well documented
● Has a real and active community
● Good design for low memory usage and/or performance on small CPUs
● Flaws are quickly getting fixed



Conclusion

Zephyr Cons

● No HAL please!
● Tools for review make us sad
● Maintainer review has been discouraging
● Moving target: code is still young, APIs are changing fast



Questions?


